Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Vaccines (Basel) ; 11(3)2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2266832

ABSTRACT

Since the emergence of COVID-19, the forecasting of new daily positive cases and deaths has been one of the essential elements in policy setting and medical resource management worldwide. An essential factor in forecasting is the modeling of susceptible populations and vaccination effectiveness (VE) at the population level. Owing to the widespread viral transmission and wide vaccination campaign coverage, it becomes challenging to model the VE in an efficient and realistic manner, while also including hybrid immunity which is acquired through full vaccination combined with infection. Here, the VE model of hybrid immunity was developed based on an in vitro study and publicly available data. Computational replication of daily positive cases demonstrates a high consistency between the replicated and observed values when considering the effect of hybrid immunity. The estimated positive cases were relatively larger than the observed value without considering hybrid immunity. Replication of the daily positive cases and its comparison would provide useful information of immunity at the population level and thus serve as useful guidance for nationwide policy setting and vaccination strategies.

2.
J Urban Health ; 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-2242259

ABSTRACT

During epidemics, the estimation of the effective reproduction number (ERN) associated with infectious disease is a challenging topic for policy development and medical resource management. The emergence of new viral variants is common in widespread pandemics including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A simple approach is required toward an appropriate and timely policy decision for understanding the potential ERN of new variants is required for policy revision. We investigated time-averaged mobility at transit stations as a surrogate to correlate with the ERN using the data from three urban prefectures in Japan. The optimal time windows, i.e., latency and duration, for the mobility to relate with the ERN were investigated. The optimal latency and duration were 5-6 and 8 days, respectively (the Spearman's ρ was 0.109-0.512 in Tokyo, 0.365-0.607 in Osaka, and 0.317-0.631 in Aichi). The same linear correlation was confirmed in Singapore and London. The mobility-adjusted ERN of the Alpha variant was 15-30%, which was 20-40% higher than the original Wuhan strain in Osaka, Aichi, and London. Similarly, the mobility-adjusted ERN of the Delta variant was 20%-40% higher than that of the Wuhan strain in Osaka and Aichi. The proposed metric would be useful for the proper evaluation of the infectivity of different SARS-CoV-2 variants in terms of ERN as well as the design of the forecasting system.

3.
Vaccines (Basel) ; 10(11)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090392

ABSTRACT

The variability of the COVID-19 vaccination effectiveness (VE) should be assessed with a resolution of a few days, assuming that the VE is influenced by public behavior and social activity. Here, the VE for the Omicron variants (BA.2 and BA.5) is numerically derived for Japan's population for the second and third vaccination doses. We then evaluated the daily VE variation due to social behavior from the daily data reports in Tokyo. The VE for the Omicron variants (BA.1, BA.2, and BA.5) are derived from the data of Japan and Tokyo with a computational approach. In addition, the effect of the different parameters regarding human behavior on VE was assessed using daily data in Tokyo. The individual VE for the Omicron BA.2 in Japan was 61% (95% CI: 57-65%) for the second dose of the vaccination from our computation, whereas that for the third dose was 86% (95% CI: 84-88%). The individual BA.5 VE for the second and third doses are 37% (95% CI: 33-40%) and 63% (95% CI: 61-65%). The reduction in the daily VE from the estimated value was closely correlated to the number of tweets related to social gatherings on Twitter. The number of tweets considered here would be one of the new candidates for VE evaluation and surveillance affecting the viral transmission.

4.
Comput Biol Med ; 149: 105986, 2022 10.
Article in English | MEDLINE | ID: covidwho-1982868

ABSTRACT

Recently, a high number of daily positive COVID-19 cases have been reported in regions with relatively high vaccination rates; hence, booster vaccination has become necessary. In addition, infections caused by the different variants and correlated factors have not been discussed in depth. With large variabilities and different co-factors, it is difficult to use conventional mathematical models to forecast the incidence of COVID-19. Machine learning based on long short-term memory was applied to forecasting the time series of new daily positive cases (DPC), serious cases, hospitalized cases, and deaths. Data acquired from regions with high rates of vaccination, such as Israel, were blended with the current data of other regions in Japan such that the effect of vaccination was considered in efficient manner. The protection provided by symptomatic infection was also considered in terms of the population effectiveness of vaccination as well as the vaccination protection waning effect and ratio and infectivity of different viral variants. To represent changes in public behavior, public mobility and interactions through social media were also included in the analysis. Comparing the observed and estimated new DPC in Tel Aviv, Israel, the parameters characterizing vaccination effectiveness and the waning protection from infection were well estimated; the vaccination effectiveness of the second dose after 5 months and the third dose after two weeks from infection by the delta variant were 0.24 and 0.95, respectively. Using the extracted parameters regarding vaccination effectiveness, DPC in three major prefectures of Japan were replicated. The key factor influencing the prevention of COVID-19 transmission is the vaccination effectiveness at the population level, which considers the waning protection from vaccination rather than the percentage of fully vaccinated people. The threshold of the efficiency at the population level was estimated as 0.3 in Tel Aviv and 0.4 in Tokyo, Osaka, and Aichi. Moreover, a weighting scheme associated with infectivity results in more accurate forecasting by the infectivity model of viral variants. Results indicate that vaccination effectiveness and infectivity of viral variants are important factors in future forecasting of DPC. Moreover, this study demonstrate a feasible way to project the effect of vaccination using data obtained from other country.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Hospitalization , Humans , SARS-CoV-2 , Vaccination/methods
5.
Comput Biol Med ; 146: 105548, 2022 07.
Article in English | MEDLINE | ID: covidwho-1881811

ABSTRACT

BACKGROUND: In the summer of 2021, the Olympic Games were held in Tokyo during the state of emergency due to the spread of COVID-19 pandemic. New daily positive cases (DPC) increased before the Olympic Games, and then decreased a few weeks after the Games. However, several cofactors influencing DPC exist; consequently, careful consideration is needed for future international events during an epidemic. METHODS: The impact of the Olympic Games on new DPC were evaluated in the Tokyo, Osaka, and Aichi Prefectures using a well-trained and -evaluated long short-term memory (LSTM) network. In addition, we proposed a compensation method based on effective reproduction number (ERN) to assess the effect of the national holidays on the DPC. RESULTS: During the spread phase, the estimated DPC with LSTM was 30%-60% lower than that of the observed value, but was consistent with the compensated value of the ERN for the three prefectures. During the decay phase, the estimated DPC was consistent with the observed values. The timing of the decay coincided with achievement of a fully-vaccinated rate of 10%-15% of people aged <65 years. CONCLUSIONS: The up- and downsurge of the pandemic wave observed in July and September are likely attributable to high ERN during national holiday periods and to the vaccination effect, especially for people aged <65 years. The effect of national holidays in Tokyo was rather notable in Aichi and Osaka, which are distant from Tokyo. The effect of the Olympic Games on the spread and decay of the pandemic wave is neither dominant nor negligible due to the shifting of the national holiday dates to coincide with the Olympic Games.


Subject(s)
COVID-19 , Sports , COVID-19/epidemiology , Humans , Machine Learning , Pandemics , Tokyo/epidemiology
6.
Vaccines (Basel) ; 10(3)2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1742751

ABSTRACT

A resurgence of COVID-19-positive cases has been observed in many countries in the latter half of 2021. The primary reasons for this resurgence are the waning immunity of vaccination after the second dose of vaccination and the changes in public behavior due to temporal convergence. The vaccination effectiveness for the omicron and delta variants has been reported from some countries, but it is still unclear for several other regions worldwide. Here, we numerically derived the effectiveness of vaccination for infection protection in individuals and populations against viral variants for the entire Japanese population (126 million). The waning immunity of vaccination for the delta variant of Japanese individuals was 93.8% (95% CI: 93.1-94.6%) among individuals <65 years of age and 95.0% (95% CI: 95.6-96.9%) among individuals ≥65 years of age. We found that waning immunity of vaccination in individuals >65 years of age was lower than in those <65 years of age, which may be attributable to human behavior and a higher vaccination rate among individuals >65 years of age. From the reported data of 25,187 positive cases with confirmed omicron variant in Tokyo in January 2022, the effectiveness of vaccination was also estimated at 62.1% (95% CI: 48-66%) compared to that of the delta variant. Derived effectiveness of vaccination would be useful to discuss the vaccination strategy for the booster shot, as well as the status of herd immunity.

7.
Int J Environ Res Public Health ; 18(15)2021 07 22.
Article in English | MEDLINE | ID: covidwho-1325658

ABSTRACT

The significant health and economic effects of COVID-19 emphasize the requirement for reliable forecasting models to avoid the sudden collapse of healthcare facilities with overloaded hospitals. Several forecasting models have been developed based on the data acquired within the early stages of the virus spread. However, with the recent emergence of new virus variants, it is unclear how the new strains could influence the efficiency of forecasting using models adopted using earlier data. In this study, we analyzed daily positive cases (DPC) data using a machine learning model to understand the effect of new viral variants on morbidity rates. A deep learning model that considers several environmental and mobility factors was used to forecast DPC in six districts of Japan. From machine learning predictions with training data since the early days of COVID-19, high-quality estimation has been achieved for data obtained earlier than March 2021. However, a significant upsurge was observed in some districts after the discovery of the new COVID-19 variant B.1.1.7 (Alpha). An average increase of 20-40% in DPC was observed after the emergence of the Alpha variant and an increase of up to 20% has been recognized in the effective reproduction number. Approximately four weeks was needed for the machine learning model to adjust the forecasting error caused by the new variants. The comparison between machine-learning predictions and reported values demonstrated that the emergence of new virus variants should be considered within COVID-19 forecasting models. This study presents an easy yet efficient way to quantify the change caused by new viral variants with potential usefulness for global data analysis.


Subject(s)
COVID-19 , Deep Learning , Forecasting , Humans , Japan , SARS-CoV-2
8.
Int J Environ Res Public Health ; 18(11)2021 May 27.
Article in English | MEDLINE | ID: covidwho-1256499

ABSTRACT

With the wide spread of COVID-19 and the corresponding negative impact on different life aspects, it becomes important to understand ways to deal with the pandemic as a part of daily routine. After a year of the COVID-19 pandemic, it has become obvious that different factors, including meteorological factors, influence the speed at which the disease is spread and the potential fatalities. However, the impact of each factor on the speed at which COVID-19 is spreading remains controversial. Accurate forecasting of potential positive cases may lead to better management of healthcare resources and provide guidelines for government policies in terms of the action required within an effective timeframe. Recently, Google Cloud has provided online COVID-19 forecasting data for the United States and Japan, which would help in predicting future situations on a state/prefecture scale and are updated on a day-by-day basis. In this study, we propose a deep learning architecture to predict the spread of COVID-19 considering various factors, such as meteorological data and public mobility estimates, and applied it to data collected in Japan to demonstrate its effectiveness. The proposed model was constructed using a neural network architecture based on a long short-term memory (LSTM) network. The model consists of multi-path LSTM layers that are trained using time-series meteorological data and public mobility data obtained from open-source data. The model was tested using different time frames, and the results were compared to Google Cloud forecasts. Public mobility is a dominant factor in estimating new positive cases, whereas meteorological data improve their accuracy. The average relative error of the proposed model ranged from 16.1% to 22.6% in major regions, which is a significant improvement compared with Google Cloud forecasting. This model can be used to provide public awareness regarding the morbidity risk of the COVID-19 pandemic in a feasible manner.


Subject(s)
COVID-19 , Pandemics , Forecasting , Humans , Japan/epidemiology , Machine Learning , SARS-CoV-2
9.
J Biomed Inform ; 117: 103743, 2021 05.
Article in English | MEDLINE | ID: covidwho-1141951

ABSTRACT

Accurate forecasting of medical service requirements is an important big data problem that is crucial for resource management in critical times such as natural disasters and pandemics. With the global spread of coronavirus disease 2019 (COVID-19), several concerns have been raised regarding the ability of medical systems to handle sudden changes in the daily routines of healthcare providers. One significant problem is the management of ambulance dispatch and control during a pandemic. To help address this problem, we first analyze ambulance dispatch data records from April 2014 to August 2020 for Nagoya City, Japan. Significant changes were observed in the data during the pandemic, including the state of emergency (SoE) declared across Japan. In this study, we propose a deep learning framework based on recurrent neural networks to estimate the number of emergency ambulance dispatches (EADs) during a SoE. The fusion of data includes environmental factors, the localization data of mobile phone users, and the past history of EADs, thereby providing a general framework for knowledge discovery and better resource management. The results indicate that the proposed blend of training data can be used efficiently in a real-world estimation of EAD requirements during periods of high uncertainties such as pandemics.


Subject(s)
Ambulances , COVID-19 , Emergency Medical Services , Knowledge Discovery , Deep Learning , Health Resources , Humans , Japan , Neural Networks, Computer , Pandemics
10.
One Health ; 12: 100203, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-971724

ABSTRACT

In this study, we analyzed the spread and decay durations of the COVID-19 pandemic in several cities of China, England, Germany, and Japan, where the first wave has undergone decay. Differences in medical and health insurance systems, as well as in regional policies incommoded the comparison of the spread and decay in different cities and countries. The spread and decay durations in the cities of the four studied countries were reordered and calculated based on an asymmetric bell-shaped model. We acquired the values of the ambient temperature, absolute humidity, and population density to perform multivariable analysis. We found a significant correlation (p < 0.05) of the spread and decay durations with population density in the four analyzed countries. Specifically, spread duration showed a high correlation with population density and absolute humidity (p < 0.05), whereas decay duration demonstrated the highest correlation with population density, absolute humidity, and maximum temperature (p < 0.05). The effect of population density was almost nonexistent in China because of the implemented strict lockdown. Our findings will be useful in policy setting and governmental actions in the next pandemic, as well as in the next waves of COVID-19.

11.
Int J Environ Res Public Health ; 17(15)2020 07 29.
Article in English | MEDLINE | ID: covidwho-693623

ABSTRACT

This study analyzed the morbidity and mortality rates of the coronavirus disease (COVID-19) pandemic in different prefectures of Japan. Under the constraint that daily maximum confirmed deaths and daily maximum cases should exceed 4 and 10, respectively, 14 prefectures were included, and cofactors affecting the morbidity and mortality rates were evaluated. In particular, the number of confirmed deaths was assessed, excluding cases of nosocomial infections and nursing home patients. The correlations between the morbidity and mortality rates and population density were statistically significant (p-value < 0.05). In addition, the percentage of elderly population was also found to be non-negligible. Among weather parameters, the maximum temperature and absolute humidity averaged over the duration were found to be in modest correlation with the morbidity and mortality rates. Lower morbidity and mortality rates were observed for higher temperature and absolute humidity. Multivariate linear regression considering these factors showed that the adjusted determination coefficient for the confirmed cases was 0.693 in terms of population density, elderly percentage, and maximum absolute humidity (p-value < 0.01). These findings could be useful for intervention planning during future pandemics, including a potential second COVID-19 outbreak.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Population Density , Weather , Aged , COVID-19 , Coronavirus Infections/virology , Disease Outbreaks , Forecasting , Humans , Humidity , Japan/epidemiology , Morbidity , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Temperature
12.
Int J Environ Res Public Health ; 17(15)2020 07 24.
Article in English | MEDLINE | ID: covidwho-671400

ABSTRACT

This study analyzed the spread and decay durations of the COVID-19 pandemic in different prefectures of Japan. During the pandemic, affordable healthcare was widely available in Japan and the medical system did not suffer a collapse, making accurate comparisons between prefectures possible. For the 16 prefectures included in this study that had daily maximum confirmed cases exceeding ten, the number of daily confirmed cases follow bell-shape or log-normal distribution in most prefectures. A good correlation was observed between the spread and decay durations. However, some exceptions were observed in areas where travelers returned from foreign countries, which were defined as the origins of infection clusters. Excluding these prefectures, the population density was shown to be a major factor, affecting the spread and decay patterns, with R2 = 0.39 (p < 0.05) and 0.42 (p < 0.05), respectively, approximately corresponding to social distancing. The maximum absolute humidity was found to affect the decay duration normalized by the population density (R2 > 0.36, p < 0.05). Our findings indicate that the estimated pandemic spread duration, based on the multivariate analysis of maximum absolute humidity, ambient temperature, and population density (adjusted R2 = 0.53, p-value < 0.05), could prove useful for intervention planning during potential future pandemics, including a second COVID-19 outbreak.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Humidity , Pneumonia, Viral/transmission , Population Density , Temperature , COVID-19 , Coronavirus Infections/virology , Humans , Japan , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL